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BACKGROUND: Bisphenol A (BPA) is an endocrine disruptor that affects fetal growth in experimental studies. Bisphenol F (BPF) and bisphenol S
(BPS), which have been substituted for BPA in some consumer products, have also shown endocrine-disrupting effects in experimental models.
However, the effects of BPF and BPS on fetal growth in humans are unknown.

OBJECTIVES: Our goal was to investigate trimester-specific associations of urinary concentrations of BPA, BPF, and BPS with size at birth.
METHODS: The present study included 845 pregnant women from Wuhan, China (2013–2015), who provided one urine sample in each of the first,
second, and third trimesters. Linear regressions with generalized estimating equations were applied to estimate trimester-specific associations of uri-
nary bisphenol concentrations with birth weight, birth length, and ponderal index. Linear mixed-effects models were used to identify potential critical
windows of susceptibility to bisphenols by comparing the exposure patterns of newborns in the 10th percentile of each birth anthropometric measure-
ment to that of those in the 90th percentile.

RESULTS:Medians (25th–75th percentiles) of urinary concentrations of BPA, BPF, and BPS were 1.40 (0.19–3.85), 0.65 (0.34–1.39), and 0.38 (0.13–
1.11) ng/mL, respectively. Urinary BPA concentrations in different trimesters were inversely, but not significantly, associated with birth weight and
ponderal index. Urinary concentrations of BPF and BPS during some trimesters were associated with significantly lower birth weight, birth length, or
ponderal index, with significant trend p-values (ptrend < 0:05) across quartiles of BPF and BPS concentrations. The observed associations were
unchanged after additionally adjusting for other bisphenols. In addition, newborns in the 10th percentile of each birth anthropometry measure had
higher BPF and BPS exposures during pregnancy than newborns in the 90th percentile of each outcome.
CONCLUSIONS: Prenatal exposure to BPF and BPS was inversely associated with size at birth in this cohort. Replication in other populations is
needed. https://doi.org/10.1289/EHP4664

Introduction
Bisphenol A (BPA), a synthetic chemical used in themanufacture of
polycarbonate plastics and epoxy resins, can be found in a variety of
consumer products, including some food and beverage cans, plastic
bottles, receipts, and medical equipment (Pergialiotis et al. 2018;

Rochester andBolden 2015). BPA is an endocrine-disrupting chem-
ical that acts as a physiological receptor in a variety of pathways
(Richter et al. 2007). Fetuses are directly exposed to BPA because it
crosses the placenta (Balakrishnan et al. 2010; Peretz et al. 2014).
Several human studies have linked higher levels of BPA exposure
during pregnancy to reduced size at birth, as well as to increased risk
of adverse birth outcomes (Cantonwine et al. 2015; Huo et al. 2015;
Miao et al. 2011; Snijder et al. 2013), whereas other studies did not
report such associations (Casas et al. 2016; Ferguson et al. 2016; Lee
et al. 2014; Philippat et al. 2012; Smarr et al. 2015).

In consideration of the toxicity of BPA and consumer concern,
manufacturers have begun to remove BPA from their products,
with gradual transitions to using bisphenol analogs. As a result,
bisphenol F (BPF) and bisphenol S (BPS) have been widely used
in manufacturing a variety of BPA-free products (Bittner et al.
2014; Rochester and Bolden 2015). In recent studies, BPF and
BPS were detected in some personal care products, receipt paper,
and food in several countries, including the United States, China,
Japan, and Korea (Liao et al. 2012b; Liao and Kannan 2014a,
2014b). Furthermore, BPF and BPS have also been found in urine
samples of populations from the United States, China, and several
other countries from Asia and Europe at levels comparable to those
of BPA (Andrianou et al. 2016; Liao et al. 2012a; Liu et al. 2017;
Ye et al. 2015; Zhang et al. 2016).

Prenatal exposure to BPA may affect fetal growth through
multiple hormone-mediated mechanisms because of its properties
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of mimicking estrogen, inhibiting androgen production, altering
thyroid signaling, and causing oxidative stress (Peretz et al. 2014;
Tomza-Marciniak et al. 2018). In addition, exposure to BPA at lev-
els consistent with plasma concentrations in pregnant women may
affect placental functions by inducing the apoptosis of primary
human cytotrophoblast cells through tumor necrosis factor-a
(Benachour and Aris 2009). A systematic review of in vitro and
experimental studies concluded that BPF and BPS might have
endocrine-disrupting effects similar to BPA (Rochester and Bolden
2015). BPF and BPS have also been shown to affect zebrafish in a
manner similar to the effects of BPA at low (environmentally rele-
vant) exposure levels (Kinch et al. 2015; Qiu et al. 2016).
However, evidence from epidemiological studies is scarce. To our
knowledge, only two recent studies have investigated prenatal ex-
posure to BPS in association with birth outcomes, with one report-
ing an inverse association between detectable (vs. nondetected)
maternal urinary BPS concentrations and birth weight (Ferguson
et al. 2018) and the other reporting a significant overall association
with longer pregnancy duration but not with birth weight or length
(Wan et al. 2018). To our knowledge, no epidemiological studies
have investigated the effect of prenatal exposure to BPF on fetal
growth.

In this longitudinal prenatal cohort study in Wuhan, China,
we estimated trimester-specific associations of urinary concentra-
tions of BPA, BPF, and BPS with birth weight, birth length, and
ponderal index in 845 pregnant women who provided urine sam-
ples at three time points during pregnancy. We further investi-
gated whether associations differed by trimester, which would be
indicative of windows of heightened susceptibility to bisphenol
exposures during pregnancy.

Methods

Study Participants
The present study was carried out based on an ongoing longitudi-
nal prenatal cohort study in Wuhan, Hubei Province, China.
Participants were recruited at Wuhan Children’s Hospital (Wuhan
Maternal and Child Healthcare Hospital), the municipal health
center for women and children in Wuhan (Wu et al. 2019).
Pregnant womenwho received their first prenatal care visits before
16 weeks of gestation were eligible. Women were enrolled in the
prenatal cohort study if they a) were residents of Wuhan; b) com-
prehended the Chinese language; c) agreed to have in-person inter-
views, take ultrasound examinations, and provide blood and urine
samples at different governmental recommended prenatal care vis-
its; d) were willing to give birth at the study hospital; and e) pro-
vided signed informed consent. The present study included 856
women, sampled between October 2013 and October 2015, who
satisfied the inclusion criteria, gave birth to live singletons without
birth defects, and provided three urine samples, one in each of
the three trimesters. Of these, 845 women were retained after
additionally excluding women who used tobacco (n=5) or con-
sumed alcohol (n=4) before or during pregnancy, as well as
women with missing values in covariates (n=2). The study pro-
tocolwas reviewed and approved by the ethics committees of Tongji
Medical College, Huazhong University of Science and Technology,
and of the Wuhan Children’s Hospital (Wuhan Maternal and Child
HealthcareHospital).

Urine Collection and Analysis
Urine samples of pregnant women were obtained at governmental
recommended prenatal care visits in the first [mean± standard
deviation ðSDÞ= 13:0± 1:1 weeks, the first prenatal care visit;
range: 10–16 weeks], second (mean±SD = 23:6±3:2 weeks;

range: 19–27 weeks), and third (mean±SD = 36:0±3:4 weeks;
range: 32–41 weeks) trimesters and were stored at −20�C in
polypropylene cups prior to analyses. All women included in the
present study provided one urine sample in each trimester.
Moreover, 688 (81.4%) of the women provided their first-
trimester urine samples at or prior to 13 weeks of gestation.

The methods for determining urinary bisphenol concentra-
tions have been described elsewhere (Zhao et al. 2018). Briefly, a
1-mL urine sample was withdrawn from samples after being
thawed at room temperature (about 25°C). After adding internal
standards of bisphenols, working solutions were incubated over-
night for digestion and were then extracted. Before analyzing, the
upper organic layers were collected and evaporated under nitro-
gen gas flow and then reconstituted. Finally, urinary concentrations
of BPA, BPF, and BPS were simultaneously measured by an ultra-
high performance liquid chromatograph (Dionex) coupled with a
triple quadrupole mass spectrometer (Thermo Scientific). Each an-
alytical batch contained all three urine samples of one woman col-
lected at different time periods, as well as blanks and quality
control samples. The limits of detection (LODs) were 0:04 ng=mL
for BPA, 0:02 ng=mL for BPF, and 0:04 ng=mL for BPS. The lin-
ear ranges of the calibration curves ranged from 1.00 to 50 ng=mL
for BPA and BPS and ranged from 0.50 to 50 ng=mL for BPF. All
calibration curves showed excellent linearity (R2 ≥ 0:9901). Intra-
and interday precisions were lower than 7.7% and 10.1% for all
three bisphenols.

Specific gravity (SG) for each urine sample was measured at
room temperature by a hand-held digital refractometer (Atago
PAL-3; Atago), which was calibrated before each measure using
deionized water.

Birth Anthropometry
Information on birth weight (in grams) and birth length (in centi-
meters) was retrieved from medical records. Ponderal index (in
kilograms per cubic meter) was calculated as 1,000 times birth
weight (in grams) divided by the cube of birth length (in meters).
A low ponderal index indicates an asymmetrical intrauterine
growth retardation (Landmann et al. 2006). Gestational age at
delivery was calculated as days between the date of delivery and
the first day of the last menstrual period (LMP), which was
reported by the participants and also corrected by obstetricians
according to the first-trimester ultrasound measures based on clini-
cal criteria. The information on both reported and corrected gesta-
tional ages at delivery was retrieved from medical records. For
women who reported an accurate date of the LMP (i.e., the differ-
ence between the reported and corrected date of the LMP was less
than 7 d), a reported gestational age was used; otherwise, an ultra-
sound corrected gestational age was used.

Gestational age-adjusted percentiles of birth weight, birth
length, and ponderal index were calculated based on the gesta-
tional age-adjusted standard deviation scores (SD-scores) for
each birth anthropometry. These SD-scores were generated based
on all available data (Hu et al. 2018) using the GAMLSS package
(version 4.3-7) in the R software (version 3.3.2; R Development
Core Team). The assumption was that the distributions of these
parameters depend only on gestational age. We first performed
Box-Cox transformations to normalize these parameters (Rigby
and Stasinopoulos 2005). Then, we modeled each parameter as a
function of gestational age in days using a cubic spline according
to different distribution families (BCPEo, BCCGo, and BCTo)
provided by the GAMLSS package. Finally, the best fitting model
for each birth anthropometry with a specific distribution was
selected based on the Akaike’s information criteria and was then
used to generate the gestational age-adjusted SD-score for each
birth anthropometry.
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Covariates
In-person interviews were conducted by trained nurses at the first
prenatal care visits using standardized and structured question-
naires to collect information on maternal age, socioeconomic sta-
tus (e.g., education and annual household income), perinatal
lifestyle before and during pregnancy (e.g., tobacco smoking,
passive smoking, and alcohol consumption), folic acid supple-
ment use during pregnancy, and anthropometric data (maternal
height and prepregnancy weight and paternal height and weight).
Passive smoking was defined as being exposed to secondhand
smoke during pregnancy from either family members (at home)
or colleagues (at work). Maternal prepregnancy body mass index
(BMI) and paternal BMI were calculated as weight (in kilograms)
divided by height in meters squared. Clinical information (e.g.,
parity, hypertensive disorders of pregnancy, gestational diabetes
mellitus, anemia, and infant sex) was retrieved from medical
records, as diagnosed by experienced obstetricians at prenatal
care visits as routine clinical care in the study hospital.

Statistical Analysis
Urinary concentrations (in nanograms per milliliter) of BPA, BPF,
and BPS below the levels of LODs were replaced by the LODs di-
vided by the square root of 2. For each bisphenol, we standardized
its concentrations for urine dilution using the following equation:
Pi =P½ð1:011–1Þ=ðSG–1Þ�, whereP represents the unadjusted con-
centrations, 1.011 is the median SG of all measurements, and SG
represents the specific gravity of individual urine samples (Duty
et al. 2005). Average concentrations of each bisphenol across the
three trimesters were also calculated. SG-standardized bisphenol
concentrations were transformed by natural logarithm to reduce
the influence of outliers. Pearson correlation coefficients of uri-
nary concentrations of BPA, BPF, and BPS in each trimester
were calculated for within-trimester comparisons.

Intraclass correlation coefficients (ICCs) and 95% confidence
intervals (CIs) of urinary SG and urinary bisphenol concentrations
were estimated using mixed-effects models in order to estimate
their reproducibility. The ICC is the ratio of between-subject var-
iance to total variance with a range from 0 (no reproducibility) to 1
(perfect reproducibility) (Rosner 2000). In addition, poor reprodu-
cibility was defined as an ICC<0:40, fair-to-good reproducibility
as an ICC between 0.40 and 0.75; and excellent reproducibility as
an ICC≥0:75.

In order to estimate trimester-specific associations of urinary
bisphenol concentrations with indicators of size at birth, we used
a multiple informant model based on the repeated measures of
urinary concentrations of BPA, BPF, and BPS (Sánchez et al.
2011). This multiple informant model treated urinary bisphenol
concentrations at different time windows as informants and
simultaneously estimated associations of each individual bisphe-
nol concentrations with a given indicator of size at birth, and was
conducted using linear regression with generalized estimating
equations. In addition, this approach did not adjust for certain
bisphenol concentrations in other time windows. Instead, it tested
the null hypothesis that coefficients for certain bisphenol were
equal at each visit; the p-value for this test, denoted as pw, alludes
to the interaction between exposure levels of bisphenols and tim-
ing of exposure (Sánchez et al. 2011). A pw < 0:05 indicates that
at least one association differed from the rest. We applied multi-
ple informant models to estimate trimester-specific associations
of urinary concentrations of BPA, BPF, and BPS in the first, sec-
ond, and third trimesters with birth weight, birth length, and pon-
deral index. Original values of these birth anthropometric
measurements were used in these multiple informant models.
Regression coefficients (bs) and 95% CIs were estimated per

interquartile range (IQR) increase (as continuous variables) and
trimester-specific quartiles (with the lowest quartiles set as refer-
ences) of urinary concentrations of each bisphenol. In order to
test ordered relations across quartiles of urinary concentrations of
BPA, BPF, and BPS, tests for linear trend (ptrend) were performed
by modeling the median value of each quartile. Associations
between average concentrations of each bisphenol across the
three trimesters (per IQR increase and quartiles) and size at birth
were also estimated using linear regression models.

In addition, we estimated exposure patterns for given outcome
levels, using the methods of Sánchez et al. (2011), to evaluate which
periods of pregnancy were more likely to be critical windows of
susceptibility to bisphenols. Specifically, we used separate linear
mixed-effects models for each bisphenol to compare urinary con-
centrations according to gestational age at measurement between
newbornswith low- versus high-gestational age-adjusted SD-scores
(in the 10th percentile vs. in the 90th percentile, respectively) for
birth weight, birth length, and ponderal index.

Regression models were adjusted for gestational age at deliv-
ery (continuous, in multiple informant models), maternal age at
recruitment (continuous), parity (nulliparous/multiparous), mater-
nal prepregnancy BMI (categorized using the Chinese standard:
<18:5=18:5–23:9=≥ 24:0 kg=m2), folic acid supplementation
during pregnancy (no/only in the first trimester/only in the second
and third trimester/during the entire pregnancy), passive smoking
during pregnancy (no/yes), education (≤9=9–12=>12 y), mater-
nal and paternal height (continuous, in birth-length models), and
infant sex (boys/girls). We also included urinary concentrations
of BPA, BPF, and BPS in the same model in order to mutually
adjust for each other.

We conducted a stratified analysis by infant sex (boys and
girls) because we observed a sex-based difference in the associa-
tion between prenatal exposure to BPA and birth weight risk in a
previous study (Huo et al. 2015). Stratified analyses were also
carried out based on maternal age at recruitment (by median age
of 27 y), parity (by nulliparous and multiparous), and prepreg-
nancy BMI [by underweight (<18:5 kg=m2), normal (18:5–
23:9 kg=m2), and overweight and above (≥24:0 kg=m2) accord-
ing to the Chinese standard]. In addition, p-values for interaction
(pinteraction) were estimated as the p-values for the interaction terms
of stratified variable and urinary concentrations of each bisphenol
in order to test differences in associations of each strata. As a sensi-
tivity analysis, models were additionally adjusted for hypertensive
disorders of pregnancy (no/hypertension/preeclampsia), gestational
diabetes mellitus (no/yes), and anemia (no/yes) in order to test for
the potential impact of pregnancy complications. Other sensitivity
analyses were conducted by replicating all regression models re-
stricted to term deliveries or women without pregnancy complica-
tions (hypertensive disorders of pregnancy, gestational diabetes
mellitus, or anemia).

All statistical analyses were performed using R (version
3.3.2; R Development Core Team) or SAS (version 9.4; SAS
Institute Inc.). The statistical significance level was set to 0.05 for
a two-tailed test.

Results
On average, the 845 women included in the present study were
27:9±3:4 y of age. The study participants were predominantly
nulliparous (85.9%) and well educated (78.9% had at least a
college-level education). Before pregnancy, 18.5% of the women
were underweight (BMI<18:5 kg=m2), 68.3% were within the
normal weight range (BMI between 18.5 and 23:9 kg=m2), 11.4%
were overweight (BMI between 24.0 and 27:9 kg=m2), and only
1.9% were obese (BMI≥28:0 kg=m2). A total of 283 (33.5%)
women were exposed to secondhand smoking during pregnancy,
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and 439 (52.0%) women delivered boys (Table 1). The mean±
SD of birth weight was 3,319± 402g (range: 1,700 to 4,750g), of
birth length was 50:2± 1:5 cm (range: 43.0 to 56:0 cm), and of
ponderal index was 26:1± 2:1 kg=m3 (range: 19.6 to 38:2 kg=m3).
In addition, 20 (2.4%) infants were born preterm and 83 (9.8%)
infants were born small for gestational age (gestational age-
adjusted SD-scores for birthweight <10th percentile).

The detection rate of BPA in all urine samples was 76.9%
(1,950 samples), which was lower than that for BPF (98.3%,
2,492 samples) or BPS (86.8%, 2,200 samples). The median of
BPA was 1.40 (IQR: 0.19–3.85) ng/mL in all urine samples,
which was higher than for BPF (median= 0:65 ng=mL; IQR:
0:34–1:39 ng=mL) or BPS (median= 0:38 ng=mL; IQR: 0:13–
1:11 ng=mL). Urinary concentrations of BPA, BPF, and BPS
increased slightly during pregnancy (see Table S1) and were
similar across different strata of covariates and some demo-
graphic and perinatal characteristics (Table 1). Urinary bisphe-
nol concentrations of women included in the present study were
compared with those of other populations from different coun-
tries in North America, Europe, and Asia (Table 2). Urinary
BPA concentrations of the study population were generally
lower than that of other populations, whereas urinary concen-
trations of BPF and BPS were similar or higher than those of
other populations.

Urinary concentrations of BPA, BPF, and BPS were weakly
correlated with each other, with Pearson correlation coefficients in
each trimester between 0.10 and 0.31 (see Table S2). The ICC of
urinary BPA concentrations throughout the whole pregnancy was
0.34 (95% CI: 0.30, 0.39), indicating a poor reproducibility during
pregnancy. But both urinary concentrations of BPF [ICC=0:57
(95% CI: 0.54, 0.61)] and BPS [ICC=0:45 (95% CI: 0.41, 0.49)]
had fair reproducibility during pregnancy. Similar ICCs of urinary
bisphenol concentrations between each individual trimesters were
also observed (see Table S3). Moreover, urinary SG of the study
population had a low reliability [ICC=0:18 (95% CI: 0.14, 0.23)]
throughout the whole pregnancy, as well as between different
trimesters.

After adjustment for potential confounders, urinary BPA con-
centrations in different trimesters were inversely, but not signifi-
cantly, associated with birth weight and ponderal index, and
urinary concentrations of BPF and BPS were inversely associated
with birth weight, birth length, or ponderal index with some stat-
istically significant findings (Figure 1). Each IQR increase in uri-
nary BPF concentration in the first trimester was associated with
reduced birth weight [b = −27 (95% CI: −55, 0 g)], and a signif-
icant reduction in ponderal index [b =−0:17 (95% CI: −0:32,
−0:02 kg=m3)] was associated with each IQR increase in urinary
BPF concentrations in the third trimester. The associations were
not significantly different across trimesters (pw > 0:1). An IQR
increase in urinary BPS concentrations in the first trimester was
significantly associated with reduced birth weight [b =−38 (95%
CI: −65, −11 g)] and ponderal index [b =−0:18 (95% CI:
−0:34, −0:02 kg=m3)], and the second-trimester concentrations
of urinary BPS were significantly associated with reduced birth
weight [b =−43 (95% CI: −71, −15 g)] and birth length [b =
−0:12 (95% CI: −0:23, −0:02 cm)]. Notably, associations
between urinary BPS concentrations and birth weight were sig-
nificantly different across trimesters (pw = 0:01) but not for birth
length and ponderal index (pw > 0:1). Associations for average
concentrations of each bisphenol across the three trimesters were
generally in the same direction as trimester-specific associations
but were mostly nonsignificant. Mean birth weight, birth length,
and ponderal index decreased across increasing quartiles of uri-
nary concentrations of BPF and BPS in different trimesters, as
did average concentrations (Figure 2; see also Table S4). In

addition, after adjusting for other bisphenols, similar inverse
associations of urinary concentrations of BPF and BPS with
size at birth were observed, and these associations remained
significant. Moreover, when additionally adjusting for preg-
nancy complications, the observed associations did not change
when compared with those from the primary analysis (see
Table S5).

Urinary bisphenol concentration patterns for women who
delivered newborns in the 10th percentiles of birth weight, birth
length, or ponderal index compared with those in the 90th percen-
tiles are shown in Figure 3. For newborns in the 10th percentile
of birth weight and birth length, maternal exposure levels of BPF
and BPS were relatively higher than for newborns in the 90th per-
centile across the period of 10–36 weeks of gestation. In addition,
mothers of newborns with a ponderal index in the 10th percentile
had higher BPF concentrations across pregnancy but declining
BPS concentrations across pregnancy. In addition, similar trends
were observed in sensitivity analyses restricted to term deliveries
(see Figure S1) and in sensitivity analyses restricted to women
without pregnancy complications (see Figure S2).

In stratified analyses, we did not observe notable effect modi-
fications by infant sex, parity, maternal age at recruitment, or
maternal prepregnancy BMI (pinteraction > 0:05; see Table S6). The
inverse associations between urinary bisphenol concentrations
and birth weight were relatively more pronounced for boys,
although the sex-based differences were not statistically signifi-
cant (pinteraction > 0:1). Urinary BPA concentrations were inver-
sely associated with ponderal index in nulliparous women and
younger women (≤27 y of age), but were positively associated
with ponderal index among multiparous women and older women
(>27 y of age); the parity-based and age-based differences were
marginally significant (pinteraction < 0:1). Moreover, results of sen-
sitivity analyses restricted to term deliveries (see Table S7) or to
women without pregnancy complications (see Table S8) did not
change appreciably when compared with those of the primary
analysis.

Discussion
In the present study, we examined and compared the trimester-
specific associations of prenatal exposure to BPA, BPF, and BPS
with size at birth in 845 women from a longitudinal prenatal
cohort in Wuhan, China. We did not observe associations
between urinary BPA concentrations during pregnancy and birth
anthropometry. Instead, we observed that urinary concentrations
of BPF and BPS in some trimesters were significantly associated
with reduced birth weight, birth length, or ponderal index and
that the associations were generally unchanged after additionally
adjusting for other bisphenols. Moreover, newborns with smaller
size at birth were born to women with relatively higher urinary
concentrations of BPF and BPS during the course of pregnancy.

Urinary BPA concentrations in general populations have been
decreasing since 2000 and 2014, whereas urinary concentrations
of BPF and BPS have been increasing (Ye et al. 2015). In our
participants, recruited between 2013 and 2015, the medians of
urinary BPA concentrations were lower than in pregnant women
from our previous study (Huo et al. 2015) or in a general popula-
tion from Tianjin, China (Zhang et al. 2013). Urinary BPA con-
centrations of our participants were also relatively lower than
preconception or pregnant women from different regions in the
United States (Braun et al. 2012; Cantonwine et al. 2015;
Hoepner et al. 2013; Meeker et al. 2013; Quiros-Alcalá et al.
2013), Spain (Casas et al. 2016; Valvi et al. 2013), Greece
(Myridakis et al. 2015), France (Philippat et al. 2012), and the
Netherlands (Jusko et al. 2014). It is noteworthy that most of
those studies collected the urine samples between 1999 and 2012.
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Table 2. Urinary concentration comparisons.

Study Location Sample years n Samples

Urinary bisphenol concentrations (ng/mL)

Value Bisphenol A Bisphenol F Bisphenol S

Preconception or pregnant women
Present study Wuhan, China 2013–2015 845 T1 (13.0 weeks) Med (25–75th)a 1.3 (0.1–3.4) 0.6 (0.3–1.3) 0.3 (0.1–1.0)

GM (95% CI) 0.8 (0.7, 0.9) 0.6 (0.6, 0.7) 0.3 (0.3, 0.4)
845 T2 (23.6 weeks) Med (25–75th)a 1.5 (0.2–3.8) 0.7 (0.4–1.4) 0.4 (0.1–1.2)

GM (95% CI) 0.9 (0.7, 1.0) 0.7 (0.6, 0.8) 0.4 (0.4, 0.4)
845 T3 (36.0 weeks) Med (25–75th)a 1.5 (0.3–4.4) 0.7 (0.4–1.5) 0.4 (0.2–1.2)

GM (95% CI) 1.0 (0.8, 1.1) 0.7 (0.7, 0.8) 0.5 (0.4, 0.5)
2,535 All samples Med (25–75th)a 1.4 (0.2–3.9) 0.7 (0.3–1.4) 0.4 (0.1–1.1)

GM (95% CI) 0.9 (0.8, 0.9) 0.7 (0.7, 0.7) 0.4 (0.4, 0.4)
ICC (95% CI)b 0.34 (0.30, 0.39) 0.57 (0.54, 0.61) 0.45 (0.41, 0.49)

Quiros-Alcalá et al. 2013
(CHAMACOS)

USA 1999–2000 407 T1 (14 weeks) GM (GSD) 0.9 (2.8) — —
GM (GSD)a 1.2 (2.4) — —

459 T2 (26 weeks) GM (GSD) 1.0 (2.6) — —
GM (GSD)a 1.2 (2.2) — —
ICC 0.22 — —
ICCb 0.16 — —

Hoepner et al. 2013
(CCCEH)

USA 1999–2006 375 T3 (34.7 weeks) GM (95% CI) 1.8 (1.7, 2.0) — —

Philippat et al. 2012 Frenchc 2002–2006 191 6–30 weeksc Med (5–95th) 3.1 (0.8–10) — —
Jusko et al. 2014
(Generation R)

the Netherlands 2002–2006 80 <18weeks Med (25–75th) 1.1 (0.6–3.3) — —
80 18–25 weeks Med (25–75th) 1.5 (0.6–3.2) — —
80 >25weeks Med (25–75th) 1.6 (0.8–2.6) — —

ICC (95% CI) 0.32 (0.18–0.46) — —
Braun et al. 2012
(EARTH)

USA 2004–2009 137 Preconception Med (25–75th)a 1.5 (1.1–2.1) — —
ICCb 0.27 — —

137 During pregnancy Med (25–75th)a 1.5 (1.1–2.3) — —
ICCb 0.37 — —

Casas et al. 2016
(INMA–Sabadell)

Spain 2004–2006 470 T1 and T3 GM (95% CI) 2.3 (2.1, 2.4) — —
ICC (95% CI) 0.15 (0.06, 0.24) — —

Valvi et al. 2013
(INMA–Sabadell)

Spain 2004–2006 402 T1 (12 weeks) Med (25–75th) 2.0 (1.2–3.6) — —
T3 (32 weeks) Med (25–75th) 1.8 (1.0–3.2) — —
Average Med (25–75th) 2.2 (1.4–3.6) — —

Braun et al. 2017
(MIREC)

Canada 2005–2009 812 T1 (12 weeks) Med (25–75th)a 0.8 (0.1–1.5) — —

Smarr et al. 2015 USA 2005–2009 213 Preconception GM (95% CI) 0.4 (0.3, 0.5) — —
ICC (95% CI) 0.38 (0.31–0.45) — —

Cantonwine et al. 2015 USA 2006–2008 351 Visit 1 (9.7 weeks) GM (GSD)a 1.3 (2.3) — —
304 Visit 2 (17.9 weeks) GM (GSD)a 1.3 (2.1) — —
301 Visit 3 (26.0 weeks) GM (GSD)a 1.4 (2.3) — —
314 Visit 4 (35.1 weeks) GM (GSD)a 1.3 (2.2) — —

ICC (95% CI)b 0.19 (0.14, 0.26) — —
Ferguson et al. 2018
(LIFECODES)

USA 2006–2008 476 T1, T2, and T3 Med (25–75th)a — — <0:4 (<0:4− 0:6)

Myridakis et al. 2015
(Rhea)

Greece 2007–2008 239 T1 (10–13 weeks) GM (95% CI) 1.2 (1.1, 1.4) — —

Meeker et al. 2013
(PROTECT)

Puerto Rico 2010–2012 105 During pregnancy GM (95% CI)a 2.6 (2.3, 2.9) — —
ICC (95% CI)b 0.24 (0.13, 0.40) — —

Huo et al. 2015 (HBC) Wuhan, China 2012–2014 339d Before delivery GM (95% CI) 2.1 (1.7, 2.5) — —
Wan et al. 2018 (HBC) Wuhan, China 2012–2014 985 Before delivery GM (25–75th) — — 0.2 (0.1–0.4)

GM (25–75th)a — — 0.2 (0.1–0.4)
General population
Zhang et al. 2013 Tianjin, China 2010 50 Men and women Med (range) 1.6 (<0:1− 8:7) — —

23 Women Med (range) 1.7 (<0:1− 8:7) — —
Liu et al. 2017
(NHANES)

USA 2013–2014 1,521 Men and women Med (25–75th) 1.3 (0.6–2.5) 0.3 (0.1–1.1) 0.4 (0.1–0.9)

Ye et al. 2015
(NHANES)

USA 2014 42 Men and women GM (95% CI) 0.4 (<0:1, 5.2) 0.4 (0.3, 0.6) 0.3 (<0:1, 3.1)

Zhang et al. 2016 Longtang Town,
China

2014 116 Adults in e-waste area Med (range) 3.0 (0.2–27.6) 0.4 (<0:1− 8:7) 0.4 (<0:1− 1:4)

Zhang et al. 2016 Qingyuan City,
China

2014 22 Adults in rural area Med (range) 0.6 (<0:1− 4:1) 0.1 (<0:1− 0:9) 0.4 (0.2–1.1)
20 Adults in urban area Med (range) 1.4 (<0:1− 4:1) 0.5 (0.1–3.0) 0.8 (0.1–1.6)

Note: —, Not applicable; CCCEH, Columbia Center for Children’s Environmental Health; CHAMACOS, Center for the Health Assessment of Mothers and Children of Salinas; CI,
confidence interval; EARTH, Environment and Reproductive Health Study; GM, geometric mean; GSD, geometric standard deviation; HBC, Healthy Baby Cohort; ICC, intraclass
coefficient; INMA-Sabadell, INfancia y Medio Ambiente study in Sabadell, Spain; LIFECODES, the LifeCodes Cohort in Boston, Massachusetts; Med, median; MIREC, Maternal-
Infant Research on Environmental Chemicals; NHANES, National Health and Nutrition Examination Survey; PROTECT, Puerto Rico Testsite for Exploring Contamination Threats;
Rhea, the mother–child cohort study in Crete; SG, specific gravity; T, trimester.
aSG-adjusted urinary bisphenol concentration (ng/mL).
bICCs and/or 95% CIs for SG-adjusted urinary bisphenol A concentrations.
cThe study populationwas from twoFrench birth cohorts: EDEN (Etude desDéterminants pré et post natals dudéveloppement et de la santé de l’Enfant) and PELAGIE (Perturbateurs endocriniens:
�EtudeLongitudinale sur lesAnomalies de laGrossesse, l’Infertilité et l’Enfance)mother–child cohorts. Urinary sampleswere collected at 6–19weeks (PELAGIE) and24–30weeks (EDEN).
dUrinary bisphenol A concentrations of controls for the nested case–control study.
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Urinary BPA concentrations of women from a 10-city Canadian
birth cohort, carried out between 2008 and 2011, were similar to
that of our participants (Braun et al. 2017). To our knowledge,
only a study of Michigan and Texas women who were trying to
conceive, conducted between 2005 and 2009, reported a urinary
BPA concentration [geometricmean = 0.38 (95% CI: 0.31, 0.45)
ng/mL] lower than the present study (Smarr et al. 2015).
Furthermore, urinary concentrations of BPF and BPS for women
in the present study were similar to or higher than those in gen-
eral populations sampled between 2009 and 2015 from urban
China (Zhang et al. 2016) and the United States (Liu et al. 2017;
Ye et al. 2015). No studies have reported urinary BPF concentra-
tions in pregnant women. Only two recent studies reported uri-
nary BPS concentrations during pregnancy that were lower than
in the women in the present study. One of those two studies was
carried out in the United States between 2006 and 2008
(Ferguson et al. 2018) and the other was one of our previous stud-
ies conducted between 2012 and 2014 (Wan et al. 2018). Based
on the comparisons, we could conclude a downward trend for uri-
nary BPA concentrations and upward trends for urinary concen-
trations of BPF and BPS across time at population levels. A
potential explanation could be the widespread use of BPA-free
products in recent years. In addition, our participants had rela-
tively higher education levels, and they might intentionally avoid
using products containing BPA before and during pregnancy.

Urinary BPA concentrations of the study population indicated
poor reproducibility during pregnancy, which was consistent
with previous studies (Braun et al. 2011, 2012; Cantonwine et al.

2015; Casas et al. 2016; Jusko et al. 2014). The poor reproduci-
bility during pregnancy might be a result of the short half-life
(∼ 6 h) of BPA excreted from the human body (Dekant and
Völkel 2008). Similarly, the half-life of BPS excreted from the
human body is <7 h (Oh et al. 2018). We are unaware of any
studies estimating the half-life of BPF. Moreover, we are not
aware of any studies reporting the reproducibility of urinary con-
centrations of BPF and BPS during pregnancy. In the present
study, we observed fair reproducibility for urinary concentrations
of BPF and BPS, suggesting that BPF and BPS could have been
used in additional products rather than only being used as BPA
replacements. Future studies could investigate the exposure sour-
ces of BPF and BPS for humans, as well as other BPA
substitutes.

Prenatal exposure to BPA in ewes at environmentally relevant
doses was associated with reduced body weight in their offspring
(Savabieasfahani et al. 2006). However, the impact of prenatal ex-
posure to BPA on size at birth is not clearly understood because of
the inconsistent findings from current epidemiological studies
(Pergialiotis et al. 2018). In a nested case–control study of low
birth weight (birthweight<2,500 g; 113 cases and 339 matched
controls), urinary BPA concentrations in the third trimester were
associated with increased risk of low birth weight (Huo et al.
2015). A prospective cohort study from the Netherlands reported
that higher urinary BPA concentrations during pregnancy were
associated with reduced fetal weight, measured by ultrasound, and
birth weight (Snijder et al. 2013). Another nested case–control
study, from the United States, related urinary BPA concentrations

pw pw pw

Bisphenol A
Single bisphenol models 0.75 0.74 0.21

1
st
 trimester -12 (-43, 19) -0.01 (-0.12, 0.11) -0.09 (-0.27, 0.08)

2
nd

 trimester -13 (-46, 19) 0.02 (-0.10, 0.14) -0.13 (-0.31, 0.05)

3
rd

 trimester -15 (-47, 17) 0.06 (-0.05, 0.18) -0.18 (-0.35, 0.00)

Average -9 (-33, 15) 0.03 (-0.06, 0.11) -0.12 (-0.25, 0.01)

Mutual adjustment models 0.95 0.62 0.38

1
st
 trimester -6 (-38, 26) 0.00 (-0.11, 0.12) -0.07 (-0.24, 0.11)

2
nd

 trimester -6 (-39, 27) 0.03 (-0.09, 0.16) -0.11 (-0.29, 0.08)

3
rd

 trimester -9 (-42, 24) 0.07 (-0.04, 0.19) -0.16 (-0.34, 0.03)

Average -5 (-29, 19) 0.04 (-0.05, 0.13) -0.11 (-0.24, 0.02)

Bisphenol F
Single bisphenol models 0.18 0.70 0.18

1
st
 trimester -27 (-54, 0) -0.06 (-0.16, 0.04) -0.11 (-0.26, 0.04)

2
nd

 trimester -25 (-52, 2) -0.03 (-0.13, 0.08) -0.14 (-0.29, 0.02)

3
rd

 trimester -28 (-55, 0) -0.02 (-0.12, 0.08) -0.17 (-0.32, -0.02)

Average -29 (-59, 1) -0.03 (-0.14, 0.08) -0.16 (-0.33, 0.00)

Mutual adjustment models 0.38 0.71 0.27

1
st
 trimester -20 (-47, 8) -0.05 (-0.15, 0.05) -0.07 (-0.23, 0.08)

2
nd

 trimester -13 (-42, 15) 0.00 (-0.11, 0.11) -0.11 (-0.27, 0.06)

3
rd

 trimester -23 (-52, 5) -0.01 (-0.11, 0.10) -0.16 (-0.31, 0.00)

Average -20 (-52, 11) 0.00 (-0.12, 0.11) -0.15 (-0.32, 0.03)

Bisphenol S
Single bisphenol models 0.01 0.14 0.15

1
st
 trimester -38 (-65, -11) -0.06 (-0.16, 0.03) -0.18 (-0.34, -0.02)

2
nd

 trimester -43 (-71, -15) -0.12 (-0.23, -0.02) -0.10 (-0.26, 0.07)

3
rd

 trimester -25 (-53, 4) -0.08 (-0.19, 0.02) -0.03 (-0.19, 0.13)

Average -33 (-62, -4) -0.10 (-0.20, 0.01) -0.08 (-0.24, 0.08)

Mutual adjustment models 0.04 0.13 0.21

1
st
 trimester -32 (-60, -5) -0.05 (-0.15, 0.05) -0.16 (-0.32, 0.01)

2
nd

 trimester -38 (-68, -8) -0.13 (-0.23, -0.02) -0.05 (-0.23, 0.13)

3
rd

 trimester -17 (-47, 13) -0.09 (-0.20, 0.02) 0.03 (-0.14, 0.20)

Average -26 (-57, 4) -0.10 (-0.21, 0.01) -0.02 (-0.19, 0.14)

-80 -60 -40 -20 0 20 40 60

β (95% CI) for birth weight (g)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

β (95% CI) for birth length (cm)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

β (95% CI) for ponderal index (kg/m3)

Figure 1. Associations between urinary bisphenol concentrations (per interquartile range increase) and size at birth. Regression coefficients (bs) and 95% confi-
dence intervals (CIs) for trimester-specific associations of urinary concentrations of bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) (per inter-
quartile range) with original values of birth weight (in grams), birth length (in centimeters), and ponderal index (in kilograms per cubic meter) were estimated
using multiple informant models. Associations between average concentrations of each bisphenol across the three trimesters were estimated using linear regres-
sion models. The single bisphenol models were adjusted for gestational age at delivery, maternal age at recruitment, parity, prepregnancy body mass index,
passive smoking during pregnancy, education, folic acid supplementation, infant sex, and maternal and paternal height (only in birth length models). The mu-
tual adjustment models were adjusted for variables in the single bisphenol models and mutually adjusted for urinary concentrations of BPA, BPF, and BPS.
Trimester-specific interquartile ranges for BPA, BPF, and BPS are provided in Table S1. pw < 0:05 indicates that associations were statistically different across
trimesters.
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Figure 2. Associations between quartiles of urinary bisphenol concentrations and size at birth. Regression coefficients (bs) and 95% confidence intervals (CIs)
for associations of trimester-specific quartiles of urinary concentrations of bisphenol A, bisphenol F, and bisphenol S with original values of birth weight (in
grams), birth length (in centimeters) and ponderal index (in kilograms per cubic meter) were estimated using multiple informant models. Associations between
quartiles of average concentrations of each bisphenol across the three trimesters were estimated using linear regression models. All models were adjusted for
gestational age at delivery, maternal age at recruitment, parity, prepregnancy body mass index, passive smoking during pregnancy, education, folic acid supple-
mentation, and infant sex. Birth length models were additionally adjusted for maternal and paternal height. Numeric data are available in Table S4.
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during pregnancy with increased risk of preterm delivery
(Cantonwine et al. 2015). On the contrary, a study from South
Korea reported a positive association of urinary BPA concen-
trations in the third trimester with birth weight (Lee et al.
2014). A French cohort also revealed positive associations of
BPA exposure during pregnancy and head circumference at
birth (Philippat et al. 2012). However, the present study and
studies from the United States (Ferguson et al. 2016; Smarr
et al. 2015) and Spain (Casas et al. 2016) did not support asso-
ciations of BPA exposures before and during pregnancy with
fetal growth. Therefore, more studies are needed to investigate
the effect of exposure to BPA during pregnancy on fetal growth
in humans.

To our knowledge, no epidemiological studies have estimated
the relationship between BPF exposure during pregnancy and fe-
tal growth, but there were two studies for BPS. One study, from
our research team, reported that urinary BPS concentration in the
third trimester was significantly associated with increased preg-
nancy duration, but BPS was not significantly associated with
reduced birth weight (Wan et al. 2018); urine samples in the first
and second trimesters were not available. The other study was
conducted in the United States and suggested inverse associations
between urinary BPS concentrations during pregnancy, at up to
three time points, and birth weight in boys (Ferguson et al. 2018).
In the present study, the observed inverse associations of urinary

concentrations of BPF and BPS with birth weight were also rela-
tively more pronounced in boys, but the sex-based difference was
not significant. Future studies with larger sample sizes are needed
to investigate whether there are sex-specific effects of BPF and
BPS on size at birth.

Fetuses are more sensitive to environmental exposures than
adults (Braun 2017). Identifying critical windows of susceptibil-
ity to environmental pollutant exposures during pregnancy is par-
ticularly crucial for researching infants’ and children’s health
(Sánchez et al. 2011). Prenatal exposure to bisphenols during
critical windows of susceptibility could have larger effects, com-
pared with exposures during other time periods, on fetal growth
(Barr et al. 2000; Sánchez et al. 2011). In the present study, using
multiple informant models, we observed significantly different
inverse associations between urinary BPS concentrations and
birth weight across trimesters, suggesting relatively stronger
associations for the exposure in first and second trimesters. But
the multiple informant model is not robust to identify accurate
windows of susceptibility (e.g., exposure at which exact weeks of
gestational has stronger associations), and this approach is not
able to account for variability in exposures within a given time
window. We thus estimated exposure patterns during pregnancy
by comparing newborns with low- versus high-gestational age-
adjusted SD-scores. The results indicate that the exposure levels
of BPF and BPS for newborns with restricted size at birth were
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Figure 3. Relative exposure of bisphenols comparing newborns in the 10th percentile of birth weight, birth length, or ponderal index to those in the 90th per-
centile. Solid lines represent relative exposures of bisphenol A, bisphenol F, or bisphenol S in the 10th percentile of birth weight, birth length, or ponderal
index to those in the 90th percentiles. Dotted lines represent pointwise 95% confidence intervals. All models were adjusted for maternal age at recruitment, par-
ity, prepregnancy body mass index, passive smoking during pregnancy, hypertensive disorders of pregnancy, gestational diabetes mellitus, education, and
infant sex. Models for birth length were additionally adjusted for maternal and paternal height.
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relatively higher throughout the whole pregnancy, especially
between 10 and 36 weeks of gestation. Therefore, the whole
pregnancy appears to be the critical window of susceptibility to
BPF and BPS for fetal growth.

As manufacturers are switching to using BPF or BPS in their
products instead of BPA (Bittner et al. 2014; Rochester and
Bolden 2015), the amount of both bisphenols in everyday prod-
ucts could continue to increase. As a result, humans are exposed
to BPF and BPS simultaneously through different sources. Our
findings suggest that prenatal exposure to higher levels of BPF and
BPS might be associated with reduced size at birth, and significant
inverse associations were relatively more pronounced for birth
weight and ponderal index. Ponderal index has been used as an in-
dicator of asymmetrical intrauterine growth restriction (Landmann
et al. 2006). The observed significant associations for ponderal
index in our data were more likely to be driven by the associa-
tions for birth weight. Furthermore, exposure to bisphenols
alters steroidogenesis in experimental animals and humans, and
might affect fetal growth through multiple hormone-mediated
mechanisms when exposed prenatally (Peretz et al. 2014;
Rochester and Bolden 2015; Tomza-Marciniak et al. 2018). But
the exact mechanisms underlying the inverse association
between prenatal exposure to bisphenols and fetal growth
remain unclear, especially for substitutes of BPA. Therefore,
future studies are necessary to investigate the interaction effects
of prenatal exposure to different bisphenols on fetal growth, as
well as the underlying mechanisms.

One strength of the present study is the repeated measure-
ments of urinary bisphenol concentrations. This enabled us to
investigate the trimester-specific associations of bisphenol expo-
sures with size at birth, as well as to estimate the critical windows
of susceptibility to bisphenols. In addition, the present study had
a large sample size of 845 women who provided urine samples in
each of the first, second, and third trimesters, which provided
enough power to investigate the associations between prenatal
exposure to bisphenols and size at birth as well as to detect sex-
specific effects. Finally, we measured urinary concentrations of
BPA, BPF, and BPS using the state-of-the-art method and
obtained accurate and reliable exposure assessments of these
bisphenols, which also enabled us to mutually adjust for all three
bisphenols.

A limitation of the present study is the potential for residual
confounding from other environmental toxicants. Humans are
simultaneously exposed to a large number of environmental pollu-
tants, and many of those have been related with restricted fetal
growth, including other endocrine-disrupting chemicals, persistent
organic pollutants, heavy metals, and airborne pollutants (Zheng
et al. 2016). Future studies investigating the impact of exposure to
environmental chemical mixtures during pregnancy on fetal
growth would help in understanding and controlling for this kind
of residual confounding. Another limitation is that we did not sys-
temically evaluate maternal diet during pregnancy, which might
affect the fetal growth and also be a source of bisphenol exposures
(Romano et al. 2014). Future studies are needed to investigate the
impact of maternal diet and intrauterine nutritional conditions on
the association of bisphenol exposures with fetal growth.

Conclusions
In this prospective prenatal cohort study, we observed significant
inverse associations of urinary concentrations of BPF and BPS in
some trimesters with birth weight, birth length, or ponderal index.
But such inverse associations were not significant for BPA. We
did not identify clear differences in associations according to tri-
mester of exposure for BPF and BPS, suggesting that the entire
gestational period may be a window of heightened susceptibility

to these BPA replacements with regard their effects on fetal
growth in humans. However, the observed associations in the
present study need to be replicated in other populations, and sex-
specific associations also need to be examined.
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